Bezout定理、Cayley-Bacharach定理,以及椭圆曲线上群作用的结合律

2024.09.26

投稿:龚惠英部门:理学院浏览次数:

活动信息

报告题目 (Title):Bezout, Cayley-Bacharach, and associativity of the group action on an elliptic curve (Bezout定理、Cayley-Bacharach定理,以及椭圆曲线上群作用的结合律)

报告人 (Speaker): Peter van der Kamp 教授(La Trobe University, Australia)

报告时间 (Time):2024年09月25日(周三) 15:30-17:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):张大军 教授

主办部门:理学院数学系

报告摘要:

I will state Bezout’s theorem, and will explain how to determine the multiplicity of a point in the intersection of two plane curves (a la Fulton). I will then provide a geometric proof of the Cayley-Bacharach theorem, which is (only) based on Bezout’s theorem, and linear algebra. Some consequences are Pappus’s theorem, Pascal’s theorem, and the associativity of the group action on an elliptic curve.

XML 地图